

Simple and Scalable Nearest Neighbor Machine Translation

Yuhan Dai*¹, Zhirui Zhang*², Qiuzhi Liu², Qu Cui², Weihua Li², Yichao Du¹, Tong Xu¹ (*∗* equal contribution)

¹University of Science and Technology of China (USTC) ² Tencent AI Lab

- 1. [Background](#page-2-0)
- 2. [Methodology](#page-6-0)
- 3. [Experiment](#page-11-0)
- 4. [Recap and Conclusion](#page-19-0)

[Background](#page-2-0)

Nearest Neighbor Machine Translation

What is *k*NN-MT ¹ ?

- is a simple non-parametric method for machine translation (MT) using nearest neighbor retrieval
- consists of two processes: datastore creation and generation with *k*NN retrieval
- improves translation accuracy without fine-tuning the entire model
- promising for fast domain adaptation

¹Khandelwal, et al. "Nearest Neighbor Machine Translation." In ICLR 2021

Challenges

- Problem
	- *◦* its large-scale datastore brings massive storage overhead and high latency during inference
- Prior Work
	- *◦* Efficient *^k*NN-MT² and Efficient Cluster-Based *k*NN-MT ³ proposed methods to reduce the datastore size, such as pruning the redundant records and reducing the dimension of keys
	- *◦* Fast *^k*NN-MT ⁴ is designed to construct a smaller datastore for each source sentence instead of consulting the entire datastore, migrates the inefficient *k*NN retrieval from the target side to the source side

²Martins, et al. "Efficient machine translation domain adaptation."

³Wang, et al. "Efficient cluster-based k-nearest-neighbor machine translation." In ACL 2022.

⁴Meng, et al. "Fast nearest neighbor machine translation." In ACL Findings 2022.

Our Solution

- Analysis
	- *◦* We investigate the involved sentence pairs during the decoding process of *k*NN-MT and found that a scarce number of training samples are important

- Solution
	- *◦* Based on the phenomenon, we propose a simple and scalable nearest neighbor machine translation framework (SK-MT)
		- dynamically constructs an extremely small datastore for each input via sentence-level retrieval
		- further introduces a distance-aware adapter to adaptively incorporate the *k*NN retrieval results
	- *◦* We illustrate the effectiveness and efficiency in two translation settings
	- *◦* We illustrate the simplicity and scalability of our method

[Methodology](#page-6-0)

Framework Overview

Inspired by our preliminary experiment which demonstrates only a few training samples in the reference corpus are involved during the decoding process, we design a simple and scalable nearest neighbor machine translation framework (SK-MT).

- dynamic datastore construction
- inference with adaptive *k*NN retrieval.

Dynamic Datastore Construction

Step 1: Dynamic Datastore Construction

- obtains samples with highest relevance score (BM25).
- re-rank the retrieved bilingual sentences and maintain top-*m*.
- build the datastore by passing top-*m* samples forward to the pre-trained NMT model.

Benefits: filter out the noise and improve inference efficiency

Inference with Adaptive *k***NN Retrieval**

Step 2: Inference with Adaptive *k***NN Retrieval**

- interpolates the model prob and *k*NN prob as *k*NN-MT does
- \bullet explicitly calculate $\lambda = g(d_0) = \mathrm{ReLU}(1 \frac{d_0}{\tau})$, where d_0 denotes the distance to the nearest neighbor.
- ignores the irrelevant records and magnifies the relevant ones

Benefits: Simple but effective, no need for further training.

- Scalability
	- *◦* corpus scale: easily adopted in a larger corpus. *k*NN-MT needs large space for datastore creation, while text retrieval is much more space-efficient.
	- *◦* translation samples: easily use different samples, but it is difficult to make changes to a pre-defined datastore
- Relation to Translation Memory
	- *◦* in a similar framework to ⁵ but introduces *^k*NN retrieval to achieve shallow fusion
	- *◦* inherits the advantage of *k*NN-MT: does not need extra training
	- *◦* text retrieval improves *k*NN-MT's efficiency
	- *◦* achieves better or comparable performance than state-of-the-art translation-memory methods. The results are included in the Appendix of our paper.

⁵Gu, et al. "Search Engine Guided Neural Machine Translation." In AAAI 2018

[Experiment](#page-11-0)

Task Settings

The experiments are conducted in two general settings: static domain adaptation and online learning from human feedback.

General Corpus

Figure 1: domain adaptation

Table 1: The statistics of EMEA and JRC-Acquis datasets for online learning.

- multi-domain datasets including IT, Medical, Koran, Law.
- online learning datasets including EMEA and JRC-Acquis.

Table 2: The statistics of multi-domain dataset.

Since the parameters of the pre-trained models are frozen, the parameters we need to take care of include:

- m: the number of samples to build a datastore
- k: the number of neighbors retrieved
- \cdot τ : the temperature to control the sharpness of the softmax function

Table 4: Grid search on m and k on IT development set with the temperature τ fixed to 100. The $*$ marks the two selected models $(SK-MT_1$ and $SK-MT_2)$ in our experiments.

k		BLEU				ChrF		
\boldsymbol{m}				4				
	42.7	42.2	41.9	40.8	61.7	61.3	61.0	60.5
2	$43.4*$	43.0	42.5	41.6	$62.1*$	61.7	61.5	60.9
4	43.5	43.8	43.0	42.3	62.2	62.1	61.7	61.3
8	43.3	43.9	43.4	42.7	62.1	62.3	62.0	61.4
16	43.3	43.9*	43.6	43.0	62.0	$62.3*$	62.1	61.8

We use two model architectures in our experiments: $m = 2, k = 1, \tau = 100$ as SK-MT₁ (for efficiency) and $m = 16$, $k = 2$, $\tau = 100$ as SK-MT₂ (for performance).

Main Results: Domain Adaptation

Figure 3: the performance of domain adaptation.

- SK-MT $_1$ do not notice significant performance degradation
- SK-MT₂ outperforms vanilla *k*NN-MT and achieves comparable performance to AK-MT
- SK-MT surpasses all the efficient methods
- It verifies the benefit of adjusting *λ* in an adaptive manner.

BLEU					ChrF							
Model	[0, 50)	[50. 100)	[100. 200)	[200. 500)	[500, 1000)	Full	[0, 50)	[50, 100)	[100, 200)	1200. 500)	[500, 1000)	Full
EMEA												
NMT	44.2	43.2	38.3	42.4	40.6	41.7	64.8	63.6	61.5	63.4	64.8	64.1
$kNN-MT$	43.6	43.4	39.9	43.8	43.8	43.4	63.5	63.7	61.8	64	65.9	64.6
KoK	44.4	44.6	44.1	45.7	53.7	49.2	65.0	65.4	64.4	65.5	71.5	68.2
$SK-MT_1$	45.5	44.8	43.4	45.6	53.2	49.2	65.3	64.7	64.3	65.5	71.6	68.3
$SK-MT2$	46.1	45.6	43.8	46.3	53.6	49.7	65.8	65.1	64.6	65.8	71.8	68.6
JRC-Acquis												
NMT	54.1	50.0	42.2	39.9	43.4	44.5	72.2	70.2	65.9	62.9	65.6	66.4
$kNN-MT$	55.5	52.2	45.7	43.6	47.7	48.1	72.0	70.7	67.8	65.1	68.3	68.3
K_0K	563	524	477	447	501	40 R	73.0	720	692	661	702	600
$SK-MT_1$	56.6	52.8	47.2	43.5	47.8	48.5	74.0	72.0	69.0	65.3	68.8	69.1
$SK-MT2$	57.4	53.7	48.2	44.7	49.5	49.8	74.5	72.5	69.4	66.0	69.7	69.8

Table 5: BLEU(\uparrow) and ChrF(\uparrow) on EMEA and JRC-Acquis datasets.

Figure 4: the performance of online learning.

Table 3: Storage overhead and inference speed on Law test set.

- SK-MT requires far less space to create the datastore
- SK-MT's decoding speed is faster than kNN-MT and even comparable to NMT

Analysis: Experiment on Larger-scale WMT'14 Dataset

- *k*NN-based methods show little power in boosting the translation quality
- low similarity greatly attributes to the unfavourable performance

[Recap and Conclusion](#page-19-0)

- We present SK-MT, a simple and scalable nearest neighbor machine translation approach for fast domain adaptation
- We demonstrate SK-MT produces equivalent or even superior performance than previous *k*NN-based approaches
- We illustrate SK-MT does not require any extra training and is efficient in both decoding time and storage overhead
- It is promising that our proposed SK-MT has a wide range of applications
- Our paper can be found on <https://arxiv.org/abs/2302.12188>
- Our code is released on <https://github.com/dirkiedai/sk-mt>.