

Simple and Scalable Nearest Neighbor Machine Translation

Yuhan Dai^{*1}, Zhirui Zhang^{*2}, Qiuzhi Liu², Qu Cui², Weihua Li², Yichao Du¹, Tong Xu¹ (* equal contribution)

¹University of Science and Technology of China (USTC) ²Tencent AI Lab

- 1. Background
- 2. Methodology
- 3. Experiment
- 4. Recap and Conclusion

Background

Nearest Neighbor Machine Translation

What is *k*NN-MT¹?

- is a simple non-parametric method for machine translation (MT) using nearest neighbor retrieval
- consists of two processes: datastore creation and generation with kNN retrieval
- improves translation accuracy without fine-tuning the entire model
- promising for fast domain adaptation

ſ	Training Translation Contexts		Datastore)			1	-		1 1			1		
	$(s^{(n)}, t^{(n)}_{i-1})$	Contexts	Representation $k_j = f(s^{(n)}, t^{(n)}_{i-1})$	Target $v_j = t_i^{(n)}$		Distances $d_j = d(k_j, q)$,	Neares	st k		Temper $d'_j = d$	rature l_j/T		Normal $p(k_j) \propto e$	ization $exp(-d'_j)$
	J'ai été à Paris. J'avais été à la maison. J'apprécie l'été.	l have l had l enjoy		been been summer 		4 3 100	X	my been been	1 3 4		my been been	0.1 0.3 0.4	=	my been been	0.40 0.32 0.28
ŀ	J'ai ma propre chambre.	l have		my	-	. 1	ſ				Г		Aaa	regation	
	Test Input Generated tokens		Representation	Target							1	_{knn} (3	(i) =	$\sum_{j} 1_{y_i=}$	$v_j p(k_j)$
	l'ai été dans ma propre chambre.		$(q - f(x, y_{1:i-1}))$	9i								L	my been		0.4 0.6

¹Khandelwal, et al. "Nearest Neighbor Machine Translation." In ICLR 2021

Challenges

- Problem
 - its large-scale datastore brings massive storage overhead and high latency during inference
- Prior Work
 - Efficient *k*NN-MT² and Efficient Cluster-Based *k*NN-MT ³ proposed methods to reduce the datastore size, such as pruning the redundant records and reducing the dimension of keys
 - Fast *k*NN-MT⁴ is designed to construct a smaller datastore for each source sentence instead of consulting the entire datastore, migrates the inefficient *k*NN retrieval from the target side to the source side

²Martins, et al. "Efficient machine translation domain adaptation."

³Wang, et al. "Efficient cluster-based k-nearest-neighbor machine translation." In ACL 2022.

⁴Meng, et al. "Fast nearest neighbor machine translation." In ACL Findings 2022.

Our Solution

- Analysis
 - We investigate the involved sentence pairs during the decoding process of kNN-MT and found that a scarce number of training samples are important

Domain			Full		Invol	Involved Samples During Inference					
Domain	Sents	Tokens	Datastore	kNN-MT	Sents	Tokens	Datastore	SK-MT			
IT	223k	3.6M	6.9G	45.9	7.1	249	0.46M	46.3			
Medical	248k	6.9M	14.0G	54.2	9.0	358	0.68M	57.8			
Law	467k	19.0M	37.0G	61.3	14.2	730	1.5M	62.7			

- Solution
 - Based on the phenomenon, we propose a simple and scalable nearest neighbor machine translation framework (SK-MT)
 - dynamically constructs an extremely small datastore for each input via sentence-level retrieval
 - further introduces a distance-aware adapter to adaptively incorporate the kNN retrieval results
 - We illustrate the effectiveness and efficiency in two translation settings
 - We illustrate the simplicity and scalability of our method

Methodology

Framework Overview

Inspired by our preliminary experiment which demonstrates only a few training samples in the reference corpus are involved during the decoding process, we design a simple and scalable nearest neighbor machine translation framework (SK-MT).

- dynamic datastore construction
- inference with adaptive *k*NN retrieval.

Dynamic Datastore Construction

Step 1: Dynamic Datastore Construction

- obtains samples with highest relevance score (BM25).
- re-rank the retrieved bilingual sentences and maintain top-m.
- build the datastore by passing top-*m* samples forward to the pre-trained NMT model.

Benefits: filter out the noise and improve inference efficiency

Inference with Adaptive *k*NN Retrieval

Step 2: Inference with Adaptive kNN Retrieval

- interpolates the model prob and *k*NN prob as *k*NN-MT does
- explicitly calculate $\lambda = g(d_0) = \text{ReLU}(1 \frac{d_0}{\tau})$, where d_0 denotes the distance to the nearest neighbor.
- ignores the irrelevant records and magnifies the relevant ones

Benefits: Simple but effective, no need for further training.

- Scalability
 - corpus scale: easily adopted in a larger corpus. *k*NN-MT needs large space for datastore creation, while text retrieval is much more space-efficient.
 - translation samples: easily use different samples, but it is difficult to make changes to a pre-defined datastore
- Relation to Translation Memory
 - in a similar framework to ⁵ but introduces kNN retrieval to achieve shallow fusion
 - inherits the advantage of kNN-MT: does not need extra training
 - text retrieval improves *k*NN-MT's efficiency
 - achieves better or comparable performance than state-of-the-art translation-memory methods. The results are included in the Appendix of our paper.

⁵Gu, et al. "Search Engine Guided Neural Machine Translation." In AAAI 2018

Experiment

Task Settings

The experiments are conducted in two general settings: static domain adaptation and online learning from human feedback.

General Corpus

Figure 1: domain adaptation

Table 1: The statistics of EMEA and JRC-Acquis datasets for online learning.

Bucket 0-50		50-100	100-200	200-500	500-1000							
EMEA												
Documents Ave sentences Ave tokens	22 38.4 1174.7	14 73.0 1938.9	7 157.9 3466.1	4 392.8 9334.5	5 759.2 22725.6							
		JRC-Ad	quis									
Documents Ave sentences Ave tokens	22 38.1 1347.1	14 73.1 2466.7	7 158.5 5345.4	4 373.8 12518.2	5 734.8 26409.2							

- multi-domain datasets including IT, Medical, Koran, Law.
- online learning datasets including EMEA and JRC-Acquis.

Table 2: The statistics ofmulti-domain dataset.

	Koran	IT	Medical	Law
Train Sents	18k	223k	248k	467k
Test Sents	2000	2000	2000	2000

Since the parameters of the pre-trained models are frozen, the parameters we need to take care of include:

- m: the number of samples to build a datastore
- k: the number of neighbors retrieved
- + τ : the temperature to control the sharpness of the softmax function

Table 4: Grid search on m and k on IT development set with the temperature τ fixed to 100. The * marks the two selected models (SK-MT₁ and SK-MT₂) in our experiments.

k		BLE	EU			Chi		
m	1	2	3	4	1	2	3	4
1	42.7	42.2	41.9	40.8	61.7	61.3	61.0	60.5
2	43.4*	43.0	42.5	41.6	62.1*	61.7	61.5	60.9
4	43.5	43.8	43.0	42.3	62.2	62.1	61.7	61.3
8	43.3	43.9	43.4	42.7	62.1	62.3	62.0	61.4
16	43.3	43.9*	43.6	43.0	62.0	62.3*	62.1	61.8

We use two model architectures in our experiments: $m = 2, k = 1, \tau = 100$ as SK-MT₁ (for efficiency) and $m = 16, k = 2, \tau = 100$ as SK-MT₂ (for performance).

Main Results: Domain Adaptation

Madal]	BLEU					ChrF		
Model	IT	Medical	Koran	Law	Avg.	IT	Medical	Koran	Law	Avg.
NMT	39.1	41.8	16.9	45.9	35.9	58.9	61.4	39.8	66.0	56.5
kNN-MT	45.9	54.2	20.4	61.3	45.5	63.3	69.5	41.3	76.0	62.5
AK-MT	46.9	56.4	20.3	62.6	46.6	64.4	71.0	41.7	76.9	63.5
FK-MT	45.5	53.6	21.2	56.0	44.1	-	-	-	-	-
EK-MT	44.4	51.9	20.1	57.8	43.6	-	-	-	-	-
CK-MT	44.2	53.1	19.3	59.7	44.1	-	-	-	-	-
SK-MT ₁	46.1	56.8	17.6	60.7	45.4	63.6	70.7	40.6	75.5	62.5
 w/o adapter 	40.6	47.0	18.4	52.3	39.6	59.7	63.4	40.9	69.1	58.3
$SK-MT_2$	46.2	57.6	19.5	62.3	46.4	64.0	71.3	41.5	76.4	63.3
 w/o adapter 	41.3	51.2	20.5	56.3	42.3	60.4	66.0	42.3	71.0	59.9

Figure 3: the performance of domain adaptation.

- SK-MT₁ do not notice significant performance degradation
- SK-MT₂ outperforms vanilla kNN-MT and achieves comparable performance to AK-MT
- SK-MT surpasses all the efficient methods
- It verifies the benefit of adjusting λ in an adaptive manner.

			BI	EU					С	hrF		
Model	[0, 50)	[50, 100)	[100, 200)	[200, 500)	[500, 1000)	Full	[0, 50)	[50, 100)	[100, 200)	[200, 500)	[500, 1000)	Full
EMEA												
NMT	44.2	43.2	38.3	42.4	40.6	41.7	64.8	63.6	61.5	63.4	64.8	64.1
kNN-MT	43.6	43.4	39.9	43.8	43.8	43.4	63.5	63.7	61.8	64	65.9	64.6
KoK	44.4	44.6	44.1	45.7	53.7	49.2	65.0	65.4	64.4	65.5	71.5	68.2
$SK-MT_1$	45.5	44.8	43.4	45.6	53.2	49.2	65.3	64.7	64.3	65.5	71.6	68.3
$SK-MT_2$	46.1	45.6	43.8	46.3	53.6	49.7	65.8	65.1	64.6	65.8	71.8	68.6
					JRC	-Acquis						
NMT	54.1	50.0	42.2	39.9	43.4	44.5	72.2	70.2	65.9	62.9	65.6	66.4
kNN-MT	55.5	52.2	45.7	43.6	47.7	48.1	72.0	70.7	67.8	65.1	68.3	68.3
KoK	56.3	52.4	477	44.7	50.1	49.8	73.0	72.0	69.2	66.1	70.2	60.0
SK-MT ₁	56.6	52.8	47.2	43.5	47.8	48.5	74.0	72.0	69.0	65.3	68.8	69.1
SK-MT ₂	57.4	53.7	48.2	44.7	49.5	49.8	74.5	72.5	69.4	66.0	69.7	69.8

Table 5: $BLEU(\uparrow)$ and $ChrF(\uparrow)$ on EMEA and JRC-Acquis datasets.

Figure 4: the performance of online learning.

Table 3: Storage overhead and inference speed on Law test set.

Madal	Stora	ige Overhead		Inference Speed (ms/sentence)							
Model	Datastore	Faiss Index	GPU	batch=1	batch=4	batch=8	batch=16				
NMT	-	-	-	300.8 (×1.00)	158.2 (×1.00)	85.1 (×1.00)	79.1 (×1.00)				
WNN MT	37.00	130	×	1986.4 (×0.15)	749.5 (×0.21)	467.4 (×0.18)	410.5 (×0.19)				
AININ-IVIT	57.00	1.50	~	409.6 (×0.73)	195.3 (×0.81)	110.5 (×0.77)	100.5 (×0.79)				
SK-MT ₁	0.16M	-	-	344.4 (×0.87)	184.8 (×0.86)	94.6 (×0.90)	85.0 (×0.93)				
SK-MT ₂	1.34M	-	-	430.5 (×0.70)	225.1 (×0.70)	131.1 (×0.65)	136.2 (×0.58)				

- SK-MT requires far less space to create the datastore
- SK-MT's decoding speed is faster than kNN-MT and even comparable to NMT

Analysis: Experiment on Larger-scale WMT'14 Dataset

- *k*NN-based methods show little power in boosting the translation quality
- low similarity greatly attributes to the unfavourable performance

			De⇒En			En⇒De							
Model	BLEU	ChrF	Datastore	FAISS Index	Speed (ms/sent)	BLEU	ChrF	Datastore	FAISS Index	Speed (ms/sent)			
NMT	31.4	58.1	-	-	36.7	27.2	57.8	-	-	32.8			
kNN-MT	31.3	58.0	145G	9.0G	252.4	27.3	57.8	128G	7.9G	343.2			
SK-MT ₁	31.4	58.0	0.06M	-	50.1	27.0	57.8	0.06M	-	43.3			
SK-MT ₂	31.3	58.0	0.46M	-	63.4	27.0	57.8	0.46M	-	50.4			

		WM	T'14		[JRC-/		IT		
	De	⇒En	En⇒De		De	e⇒En	Er	n⇒De	De⇒En	
Similarity	Sent	Percent	Sent	Percent	Sent	Percent	Sent	Percent	Sent	Percent
[0, 0.1)	1	0%	0	0%	2	0%	0	0%	164	8.2%
[0.1, 0.2)	70	2.3%	61	2%	116	4.7%	70	2.8%	111	5.6%
[0.2, 0.3)	1210	40.3%	1101	36.7%	344	13.6%	288	11.4%	174	8.7%
[0.3, 0.4)	1096	36.5%	1125	37.5%	346	13.7%	353	14.1%	229	11.5%
[0.4, 0.5)	411	13.7%	468	15.6%	226	0.9%	225	8.9%	141	7.1%
[0.5, 0.6)	173	5.8%	198	6.6%	233	9.1%	246	9.7%	543	27.2%
[0.6, 0.7)	28	0.9%	35	1.2%	223	8.7%	213	8.4%	296	14.8%
[0.7, 0.8)	9	0.3%	11	0.4%	216	0.5%	228	9%	151	7.6%
[0.8, 0.9)	4	0.1%	4	0.1%	369	14.8%	418	16.8%	148	7.4%
[0.9, 1]	1	0%	1	0%	441	16.6%	442	17.7%	43	2.2%

Recap and Conclusion

- We present SK-MT, a simple and scalable nearest neighbor machine translation approach for fast domain adaptation
- We demonstrate SK-MT produces equivalent or even superior performance than previous *k*NN-based approaches
- We illustrate SK-MT does not require any extra training and is efficient in both decoding time and storage overhead
- It is promising that our proposed SK-MT has a wide range of applications
- Our paper can be found on https://arxiv.org/abs/2302.12188
- Our code is released on https://github.com/dirkiedai/sk-mt.